Seasonal use of torpor by free-ranging Australian owlet-nightjars (Aegotheles cristatus).
نویسندگان
چکیده
With the exception of some data for common poorwills (Phalaenoptilus nuttallii) and anecdotal reports for a few other species, knowledge about the use of torpor by free-ranging birds is limited. Our study was designed to assess the use of torpor by free-ranging Australian owlet-nightjars (Aegotheles cristatus). We selected this species for study because of their relatively small body size (50 g), arthropod diet, nocturnal sedentary nature, taxonomic affiliation with other birds for whom the use of torpor is well documented, use of cavity roosts, and because of the cold winter (mean July minimum ambient temperature [T(a)] of approximately 0 degrees C) in the study area. We tracked 12 owlet-nightjars carrying temperature-sensitive transmitters for a total of 906 bird-days (range of 15-115 d per individual). Five different individuals entered torpor on 96 d in total. Torpor bouts occurred only between May 8 and September 8, the coldest period of the year. The lowest skin temperature (T(skin)) recorded for any bird was 19.6 degrees C, and the lowest core temperature was 22.4 degrees C. Surprisingly, torpor was rarely used at night because birds usually foraged then. Instead, torpor typically began near dawn, even on cold nights. Torpor bouts beginning at dawn lasted approximately 4 h. On 36% of days when torpor was used at dawn, birds reentered torpor later in the day. Torpor was not used during the breeding season, but this period also corresponds to the warm part of the year. There were no distinct daily minimum, maximum, or mean T(a) thresholds that could be used to reliably distinguish days when dawn torpor was used from those when it was not, although torpor was commonly employed when daily minimum T(a) fell below 3.9 degrees C. Our results show that even though Australia is typically thought of as a warm continent, at least some of the avifauna use torpor as a regular means of saving energy. We hypothesise that the reasons for this species' use of torpor include its ability to remain active all night foraging, either for terrestrial arthropods while walking or for flying insects taken on the wing, and/or its habit of roosting in cavities, which allows them to remain hidden in the daytime.
منابع مشابه
Seasonal variation in thermal energetics of the Australian owlet-nightjar (Aegotheles cristatus).
Many birds living in regions with seasonal fluctuations in ambient temperatures (T(a)) typically respond to cold by increasing insulation and adjusting metabolic rate. Seasonal variation in thermal physiology has not been studied for the Caprimulgiformes, an order of birds that generally have basal metabolic rates (BMR) lower than predicted for their body mass. We measured the metabolic rate an...
متن کاملS22-4 Torpor in Australian birds
Energy-conserving torpor is characterized by pronounced reductions in body temperature and metabolic rate and, in Australian birds, is known to occur in the Caprimulgiformes (spotted nightjar, Australian owlet-nightjar, tawny frogmouth), Apodiformes (white-throated needletail) and the Passeriformes (dusky woodswallow). Anecdotal evidence suggests that it also may occur in the white-fronted hone...
متن کاملPhylogeny of the owlet-nightjars (Aves: Aegothelidae) based on mitochondrial DNA sequence.
The avian family Aegothelidae (Owlet-nightjars) comprises nine extant species and one extinct species, all of which are currently classified in a single genus, Aegotheles. Owlet-nightjars are secretive nocturnal birds of the South Pacific. They are relatively poorly studied and some species are known from only a few specimens. Furthermore, their confusing morphological variation has made it dif...
متن کاملTHEME AND VARIATIONS: HETEROTHERMY IN MAMMALS Torpor during Reproduction in Mammals and Birds: Dealing with an Energetic Conundrum
Synopsis Torpor and reproduction in mammals and birds are widely viewed as mutually exclusive processes because of opposing energetic and hormonal demands. However, the reported number of heterothermic species that express torpor during reproduction is ever increasing, to some extent because of recent work on free-ranging animals. We summarize current knowledge about those heterothermic mammals...
متن کاملTorpor during reproduction in mammals and birds: dealing with an energetic conundrum.
Torpor and reproduction in mammals and birds are widely viewed as mutually exclusive processes because of opposing energetic and hormonal demands. However, the reported number of heterothermic species that express torpor during reproduction is ever increasing, to some extent because of recent work on free-ranging animals. We summarize current knowledge about those heterothermic mammals that do ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological and biochemical zoology : PBZ
دوره 73 5 شماره
صفحات -
تاریخ انتشار 2000